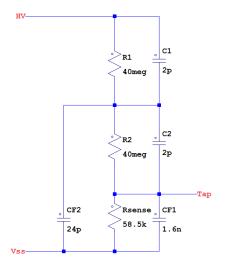


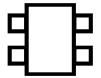
18SCT000 - PRELIMINARY SPECIFICATION - REVISION APRIL 21, 2017


- Maximum Voltage. . . 1100 V
- Nominal Ratio = 0.00730
- Mask Programmable Ratio from 1.0E-5 to 0.200
- Integrated Low-Pass Filter
- High Total Resistance ~ 80Meg

Description

This device is a high-voltage (1KV min) voltage divider typically used in system requiring the ability to sense high voltages for example those generated from an embedded charge-pump. The chip has a built-in low-pass filter fallowing the chip to filter voltage changes

typical of voltage pumping frequencies while allowing accurate voltage measurements when the pump is turned-off. The voltage divider ratio is mask programmable in a wide range from 1.0E-5 to 0.2000.



Absolute maximum rating

Input Voltage (V _{HV} - V _{SS})	+/-1100 V
Transient High-Voltage (Rise Time < 100μSec)	+-500V
Output Voltage	0.6/+20V
Operating temperature	-40 C to 100 C
Storage temperature	-65 C to 125 C

18SCT000 - PRELIMINARY SPECIFICATION - REVISION APRIL 21, 2017

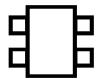
Recommended operating conditions

PARAMETER	MIN	MAX	UNIT
Operating voltage (V _{HV} - V _{SS})	0	1000	V

Electrical charateristics at body temperature (BT = 37C + /- 2C)

	PARAMETER	TEST CONDITIONS	TEMP	MIN	TYP	MAX	UNIT
R _{sense}	Divider Ratio	V _{HV} =500V	ВТ	700	730	760	μV/V
R _{TOT}	Total Resistance	V _{HV} =500V	BT	50.0	76.0	110.0	MegΩ
T _F	Filter Time Constant	V _{HV} =0V -> 500V	ВТ	0.60	0.91	1.35	mSec
R _{Sense}	Sense Resistor	VTab=1.00V; V _{HV} =0V	ВТ	37.0	55.0	80.0	kΩ
ΔR/R	Resistor Linearity	R@100V; R@750V	BT	-0.00	+0.30	+0.60	%

Operating charateristics (BT = 37C +/- 2C unless specified)


	PARAMETER	TEST CONDITIONS	TEMP	MIN	TYP	MAX	UNIT
T _{SET}	Settling time to 99%	V _{HV} = 0V to 60V	ВТ	2.3	3.6	6.0	mSec
T _{C1}	First Order Temperature Coefficient	T -40C to 85C	-		-4400		ppm/C
T _{C2}	Second Order Temperature Coefficient	T -40C to 85C	-		+12.2		ppm/C ²

Die dimensions

	PARAMETER	MIN	TYP	MAX	UNIT
Y _{SIZE}	Long Side Dimensions	2250	2350	2450	μm
X _{SIZE}	Short Side Dimensions	1050	1150	1250	μm
Z _{SIZE}	Die Thickness	260	285	310	μm

Visual inspection

PARAMETER	Lot Sampled	Sample Size	Fails Allowed	UNIT
100% Visual Inspection per MIL STD 883H Method 2010 Condition B.	ALL	100%	n/a	n/a

18SCT000 - PRELIMINARY SPECIFICATION - REVISION APRIL 21, 2017

TYPICAL CHARACTERISTICS

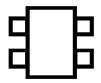
Product qualification tests

PARAMETER	Lot Sampled	Sample Size	Fails Allowed	UNIT
Static burn-in 504hrs @ V _{HV} =1000V; MIL STD 883 method 1015	3	22	0	n/a
Physical dimensions	3	11	0	n/a
Wire Bond Evaluation (Gold Ball Bond) per MIL STD 883 method 2011	3	20	1	n/a

Lot acceptance tests

PARAMETER	Lot Sampled	Sample Size	Fails Allowed	UNIT
Static burn-in 168hrs @ V _{HV} =1000V; MIL STD 883 method 1015	each	22	0	n/a
Physical dimensions	each	11	0	n/a
Wire Bond Evaluation (Gold Ball Bond) per MIL STD 883 method 2011	each	20	1	n/a

Product qualification tests are done on 3 batches only while lot acceptance test are performed on each "diffusion lot". Lot acceptance tests (LAT) are considered done if the lot in question was used for product qualification.


All samples used for qualification and LAT burn-in test are assembled in a open cavity ceramic DIL package with a dielectric silicone gel filling the cavity where the chip is mounted to provide isolation between the wirebonds and the substrate and to eliminate surface conduction and polarization as possible means of unwanted failure.

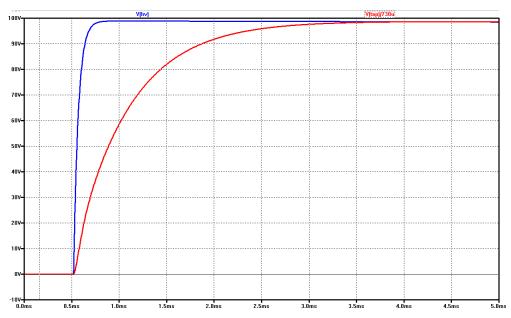
Application note

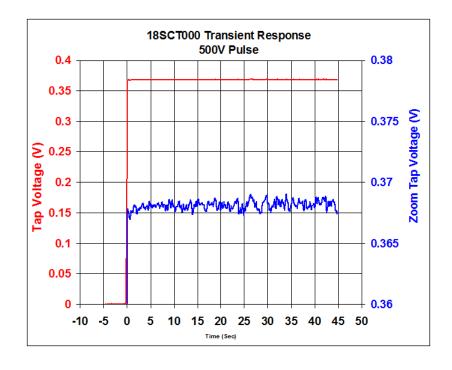
To make best use of the 18SCT000 the chip should be molded before high voltage is applied to it. This can either be done with a standard mold compound or with silicone gel. Care should be taken when selecting a encapsulant to ensure proper dielectric strength and of course resistance. We recommend that the dielectric strength of the dielectric used be greater than 10kV/mm at a thickness of 50um.

Care should also be taken to properly isolate the chips substrate which is biased at about half V_{HV}. In no circumstance should the chip be mounted over layers providing less than 1kV of dielectric isolation. It is also strongly recommended to use non-conducting epoxy for attaching the chip.

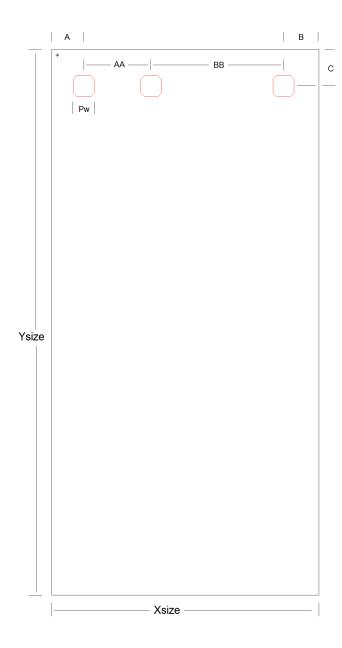
Capacitance between the substrate node and Vss is also important. There is an internal capacitor (see Equivalent circuit on page 1) of about 25pF in value between these node and any additional

18SCT000 - PRELIMINARY SPECIFICATION - REVISION APRIL 21, 2017


capacitance will increase the 18SCT000's time constant.


Ball bonding should be used for attaching conductors to the chip's pad. Wedge bonding is not recommended because of the shorter distance between the wirebond and the chip's edge increasing the risk of arcing. When using ball bonding the wire should extend vertically for at least 150um before going horizontal toward the substrate of package pad.

18SCT000 - PRELIMINARY SPECIFICATION - REVISION APRIL 21, 2017


Transient Response to Large Voltage Swing (100V)

18SCT000 - PRELIMINARY SPECIFICATION - REVISION APRIL 21, 2017

DIMENSIONS

Param	MIN	NOM	MAX
Xsize	2250	2350	2450
Ysize	1050	1150	1250
Zsize	260	285	310
Pw*	85	90	95
AA*	288	289	290
BB*	570	571	572
A	87	137	187
В	103	153	203
C	108	158	208

* Dimensions guarantied by design All dimensions in microns